三角恒等式

编辑:往事网互动百科 时间:2019-11-22 13:49:59
编辑 锁定
本词条缺少信息栏,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!
关于三角函数的一些已证明的恒等式。

三角恒等式基本定义

编辑
sinθ(正弦)cosθ(余弦)tanθ(正切)cotθ(余切)secθ(正割)cscθ(余割

三角恒等式诱导公式

编辑

三角恒等式基本公式

sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα
cot(2kπ+α)=cotα sec(2kπ+α)=secα csc(2kπ+α)=cscα
sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα
cot(π+α)=cotα sec(π+α)=-secα csc(π+α)=-cscα
sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα
cot(-α)=-cotα sec(-α)=secα csc(-α)=-cscα
sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα
cot(π-α)=-cotα sec(π-α)=-secα csc(π-α)=cscα
sin(α-π)=-sinα cos(α-π)=-cosα tan(α-π)=tanα
cot(α-π)=cotα sec(α-π)=-secα csc(α-π)=-cscα
sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα
cot(2π-α)=-cotα sec(2π-α)=secα csc(2π-α)=-cscα
sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα
cot(π/2+α)=-tanα sec(π/2+α)=-cscα csc(π/2+α)=secα
sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα
cot(π/2-α)=tanα sec(π/2-α)=cscα csc(π/2-α)=secα
sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=cotα
cot(3π/2+α)=tanα sec(3π/2+α)=cscα csc(3π/2+α)=-secα
sin(3π/2-α)=-cosα cos(3π/2-α)=sinα tan(3π/2-α)=cotα
cot(3π/2-α)=tanα sec(3π/2-α)=-cscα csc(3π/2-α)=-secα

三角恒等式两角和差

cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

三角恒等式和差化积

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

三角恒等式积化和差

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

三角恒等式倍角公式

sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2
tan(2α)=2tanα/[1-(tanα)^2]
cot(2α)=(cot²α-1)/(2cotα)
sec(2α)=sec²α/(1-tan²α)
csc(2α)=1/2*secα·cscα
sin(3α) = 3sinα-4sin³α = 4sinα·sin(60°+α)sin(60°-α)
cos(3α) = 4cos³α-3cosα = 4cosα·cos(60°+α)cos(60°-α)
tan(3α) = (3tanα-tan³α)/(1-3tan²α) = tanαtan(π/3+α)tan(π/3-α)
cot(3α)=(cot³α-3cotα)/(3cotα-1)
倍角公式
根据欧拉公式(cosθ+isinθ)^n=cosnθ+isinnθ
将左边用二项式定理展开分别整理实部和虚部可以得到下面两组公式
sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…
cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α

三角恒等式半角公式

sin(α/2)=±√[(1-cosα)/2] cos(α/2)=±√[(1-cosα)/2]
tan(α/2)=±√[(1-cosα)/(1+cosα)]=sinα/(1+cosα)=(1-cosα)/sinα=cscα-cotα
cot(α/2)=±√[(1+cosα)/(1-cosα)]=(1+cosα)/sinα=sinα/(1-cotα)=cscα+cotα
sec(α/2)=±√[(2secα/(secα+1)] csc(α/2)=±√[(2secα/(secα-1)]
辅助角Asinα+Bcosα=√(A^2+B^2)sin[α+arctan(B/A)] Asinα+Bcosα=√(A^2+B^2)cos[α-arctan(A/B)]

三角恒等式万能公式

sin(a)=[2tan(a/2)]/[1+tan^2(a/2)] cos(a)=[1-tan^2(a/2)]/[1+tan^2(a/2)]
tan(a)=[2tan(a/2)]/[1-tan^2(a/2)]

三角恒等式降幂公式

sin^α=[1-cos(2α)]/2 cos^α=[1+cos(2α)]/2=1-sin(2α)/2
tan^α=[1-cos(2α)]/[1+cos(2α)]

三角恒等式三角和

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

三角恒等式幂级数

c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)
c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)
它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...cn...及a都是常数, 这种级数称为幂级数。
泰勒展开式又叫幂级数展开法
f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...+f(n)(a)/n!*(x-a)n+……
e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+…… (-∞<x<∞)
ln(1+x)=x-x²/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1)
sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。 (-∞<x<∞)
cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞<x<∞)
arcsin x = x + x^3/(2*3) + (1*3)x^5/(2*4*5) + 1*3*5(x^7)/(2*4*6*7)……+(2k+1)!!*x^(2k+1)/(2k!!*(2k+1))+……(|x|<1) !!表示双阶乘
arccos x = π -(x + x^3/(2*3) + (1*3)x^5/(2*4*5) + 1*3*5(x^7)/(2*4*6*7)……)(|x|<1)
arctan x = x - x^3/3 + x^5/5 -……(x≤1)
sinh x = x+x^3/3!+x^5/5!+……+(x^(2k-1))/(2k-1)!+…… (-∞<x<∞)
cosh x = 1+x^2/2!+x^4/4!+……+(x^(2k))/(2k)!+……(-∞<x<∞)
arcsinh x =x - x^3/(2*3) + (1*3)x^5/(2*4*5) -1*3*5(x^7)/(2*4*6*7)……(|x|<1)
arctanh x = x + x^3/3 + x^5/5 + ……(|x|<1)
在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。
傅立叶级数
傅里叶级数又称三角级数
f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx)
a0=1/π∫(π..-π) (f(x))dx
an=1/π∫(π..-π) (f(x)cosnx)dx
bn=1/π∫(π..-π) (f(x)sinnx)dx
记忆口诀
奇变偶不变,符号看象限

三角恒等式其他

设A,B,C是三角形的三个内角
tanA+tanB+tanC=tanAtanBtanC
cotAcotB+cotBcotC+cotCcotA=1
(cosA)^2+(cosB)^2+(cosC)^2+2cosAcosBcosC=1
tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1
sin2A+sin2B+sin2C=4sinAsinBsinC
sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)

三角恒等式应用

编辑
(一)不等式的证明
已知A,B,C是三角形的三个内角
求证cotA+cotB+cotC>=√3
cotA+cotB+cotC=cotA+cotB-cot(A+B)>cotA+cotB-cot(B)=cotA>0
(cotA+cotB+cotC)^2>=3(cotAcotB+cotBcotC+cotCcotA)=3
所以cotA+cotB+cotC>=√3
词条标签:
科学 理学 学科